Search for Articles:

Open Journal of Mathematical Sciences (OMS)

The Open Journal of Mathematical Sciences (OMS) ISSN: 2523-0212 (Online) | 2616-4906 (Print) is partially supported by the National Mathematical Society of Pakistan, is a single-blind peer-reviewed and open-access journal dedicated to publishing original research articles, review papers, and survey articles in all areas of mathematics.

  • Diamond Open Access: OMS follows the Diamond Open Access model—completely free for both authors and readers, with no article processing charges (APCs).
  • Rapid Publication: Accepted papers are published online as soon as they are ready, ensuring timely dissemination of research findings.
  • Scope: The journal welcomes high-quality contributions across all branches of mathematics, offering a broad platform for scholarly exchange.
  • Publication Frequency: While articles are available online throughout the year, OMS publishes one annual print volume in December for readers who prefer physical copies
  • Indexing: Scopus, ROAD, J-Gate Portal, AcademicKeys, Crossref (DOI prefix: 10.30538), Scilit, Directory of Research Journals Indexing.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Fethi Soltani1,2
1Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis 2092, Tunisia
2Ecole Nationale d’Ingénieurs de Carthage, Université de Carthage, Tunis 2035, Tunisia
Abstract:

We introduce \(r\)-Fock space \(\mathscr{F}_{r}\) which generalizes some previously known Hilbert spaces, and study the \(r\)-derivative operator \(\frac{\mbox{d}^r}{\mbox{d}z^r}\) and the multiplication operator by \(z^r\). A general uncertainty inequality of Heisenberg-type is obtained. We also consider the extremal functions for the \(r\)-difference operator \(D_r\) on the space and obtain approximate inversion formulas.

Jun Cheng1, Peibiao Zhao1
1School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:

Active lock-in options are a class of complex derivatives characterized by pronounced path dependence and optimal decision making features, and they possess significant application value in the design of structured financial products and risk management. This paper investigates the pricing of active lock-in call options under a stochastic volatility framework. The lock-in decision is formulated as an optimal stopping problem and is further reformulated as a partial differential equation with obstacle constraints. By introducing a linear complementarity problem formulation, the structural properties of the option value function and the optimal lock-in boundary are systematically characterized. From a numerical perspective, an IMEX time discretization scheme is employed to transform the continuous problem into a sequence of time-layered discrete complementarity systems. These systems are efficiently solved using the projected successive over relaxation (PSOR) algorithm. Numerical experiments are conducted to analyze the structural features and economic interpretations of the value function and the associated free boundary surface.

Antonio E. Bargellini1, Daniele Ritelli1
1Department of Statistical Sciences, University of Bologna, Italy
Abstract:

In this paper, we extend the classical logistic law by incorporating autonomously evolving, time-dependent coefficients that allow both the intrinsic growth rate \(\gamma(t)\) and the carrying capacity \(K(t)\) to vary over time according to logistic modulated dynamics. In particular, the carrying capacity is modeled as a logistic process with intrinsic growth rate \(\alpha\) and saturation parameter \(\beta\), yielding an asymptotic level of \(\frac{\alpha}{\beta}\). The objective is to investigate how temporal variability in the governing coefficients influences both transient and asymptotic regimes of the population dynamics and to assess the extent to which the system behavior can be controlled through a reduced set of key parameters. Analytical results are derived in closed form, expressed in terms of hypergeometric functions, and compared with numerical integrations for validation purposes. It is shown that the model admits a long-term equilibrium determined by the ratio \(\frac{\alpha}{\beta}\), independently of the initial population size \(S_0\), while short- and medium-term dynamics are strongly shaped by the interplay between \(S_0\) and the non-autonomous logistic evolution of the carrying capacity \(K(t)\). These results illustrate how analytically tractable non-autonomous logistic models with internally generated coefficient trajectories can enhance the qualitative understanding of population dynamics and provide reliable benchmarks for numerical simulations, with potential applications in sustainable resource management, aquaculture, and ecological modeling.

Muhammad Aslam Noor1, Khalida Inayat Noor1
1Department of Mathematics, University of Wah, Wah Cantt., Pakistan
Abstract:

Some new classes of inverse variational inequalities, which can be viewed as a novel important special case of general variational equalities, are investigated. Projection method, auxiliary principle and dynamical systems coupled with finite difference approach are used to suggest and analyzed a number of new and known numerical techniques for solving inverse variational inequalities. Convergence analysis of these methods is investigated under suitable conditions. One can obtain a number of new classes of inverse variational inequalities by interchanging the role of operators. Some important special cases are highlighted. Several open problems are suggested for future research.

Maher Berzig1
1Université de Tunis, École Nationale Supérieure d’Ingénieurs de Tunis, Département de Mathématiques, 5 avenue Taha Hussein Montfleury, 1008 Tunis, Tunis, Tunisie
Abstract:

We introduce the concept of projective suprametrics and provide new part suprametrics in a normed vector space ordered by a cone. We then examine how the convergence of the underlying norm relates to that of the projective and given suprametrics, and we establish sufficient conditions for the completeness of certain subsets. Moreover, we prove a version of Krein-Rutman theorem via a fixed point theorem in suprametric spaces, and study spectral properties of positive linear operators. Furthermore, we show that operator equations involving some concave or convex operators satisfy a Geraghty contraction and therefore have solutions. As an application, we prove a Perron-Frobenius theorem for a tensor eigenvalue problem.

Mafuz Worku1, Jemal Yesuf2
1Department of Mathematics, Jimma University, Ethiopia
2Department of Mathematics, Samara University, Ethiopia
Abstract:

We characterize the boundedness and compactness of generalized integration operators acting between Fock spaces and apply these characterizations to investigate the path-connected components and the singleton of path-connected components of the space of bounded generalized integration operators. Moreover, we describe the essential norm of these operators.

Jagan Mohan Jonnalagadda1
1Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India – 500078
Abstract:

This article considers a second-order difference equation with constant coefficients in its standard form and two different classes of two-point homogeneous boundary conditions. First, we construct the corresponding Green functions and derive some important properties for further analysis. Next, we propose adequate conditions for the existence of solutions to the considered boundary value problems. Finally, we offer two examples to show the applicability of the main results.

Christophe Chesneau1
1Department of Mathematics, LMNO, University of Caen-Normandie, 14032 Caen, France
Abstract:

In this paper, we establish several new arctangent- and logarithmic-Hardy-Hilbert integral inequalities. The approach combines fundamental principles with refined techniques from the theory of integral inequalities, leading to a range of original results. Complete proofs are presented together with a discussion of their sharpness and potential applications.

Mircea Crasmareanu1
1Faculty of Mathematics, University “Al. I. Cuza”, 700506, Iasi, Romania
Abstract:

This note introduces a \(1\)-parameter of cubic curves naturally associated to the sphere \(S^4\) considered in the unique \(5\)-dimensional irreducible representation space of \(SO(3)\). Eight examples are discussed with the last two being elliptic curves. Also, two conics are defined naturally in our setting by a special basis of the Lie algebra \(sl(3, \mathbb{R})\).

Luca Guerrini1
1Department of Management, Polytechnic University of Marche, Piazzale Martelli 8, 60121 Ancona, Italy
Abstract:

This paper introduces a unified framework for fixed point theorems involving asymptotically regular mappings in \(b\)-metric spaces through the concept of contractive families. We establish a general fixed point theorem that encompasses various existing results, including those of Kannan-type and generalized contractive conditions, as special cases. In particular, we demonstrate that the recent results of Nagac and Tas [1] emerge naturally as special cases of our main theorem through appropriate parameter choices. The main result employs coefficient functions and a general auxiliary function with strengthened continuity conditions, providing flexibility that allows the derivation of numerous particular cases. Several corollaries with complete proofs are presented to demonstrate that our results properly generalize and extend well-known theorems in the literature.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more